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Abstract. We study a system of equations which models the formation of clusters by coagulation,
with particles of unit size being injected at a time-dependent rate. We observe that the criteria under
which gelation occurs are the same as for the constant mass and constant monomer cases, which
have been studied previously. We identify a variety of types of behaviour in the large-time limit,
depending on the coagulation kernel and on the rate at which monomer is introduced into the
system. The results are obtained by means of exact (generating function) techniques, matched
asymptotic expansions and numerical simulations.

1. Introduction

We examine the Smoluchowski coagulation equations [20] with monomers being injected into
the system at a rat@ (¢ + 19)®, so that the usual system generalizes to

[e.¢]
c1= Q(t +10)” — Zak.lckcl (1.1)
k=1
Jj—1 00
¢j= % Zak,j—kckcj—k - Zak,jckcj j=2 (1.2)
=1 =1

wherec;(¢) is the concentration of clusters of sizat timer, and the coagulation kerng ;
specifies the rate at which clusters of sieendk coalesce. In the analysis that follows

arj = 2Ok + jPk*) (1.3)

will be adopted. The constam® can, without loss of generality, be scaled to unity, which
henceforth we do. The moments of the distribution are defined by

My(t) = kPer(t) p=012.... (1.4)
k=1

A rigorous foundation for the study of the Smoluchowski coagulation equations has been
provided by Ball and Carr [1], the existence and uniqueness of solutions being proved for
aggregation kernels of the form , = j* +k“ anda; ; = (jk)*. Inthe latter case, it is shown
that gelation (mass loss) occursxif> % and does so instantaneouslyif- 1. These results
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were extended to more general kernels by Carr and da Costa [2], who proved that instantaneous
gelation occurs for any coefficients satisfyiffgrk? < a;, < (jk)* withe > B > 1. Though

these papers consider only the constant mass formulation of the problem, similar results hold
for the problem in which mass is continuously added to the system.

The physical applications of this current work include the modelling of phase transitions
in which the monomer is released at a time-dependent rate, for example, due to the decay of
a precursor chemical, as occurs in cement hydration [21]. This method of releasing monomer
into the coagulating system is in contrast to both (i) the constant monomer case, which models
the pool chemical approximation where a supply of monomer is assumed to act in such a
way as to maintain some artificially fixed concentration; and with (ii) the constant mass case,
in which monodisperse initial conditions are typically assumed, so that=at0, the total
mass of the system is instantaneously present in monomeric form and undergoes coagulation
as time progresses. The Smoluchowski coagulation equations are used in modelling aerosol
kinetics [11]. During the injection of a stream of particles into a chamber, matter injected at
the beginning may start undergoing coagulation before all the matter has been introduced to
the chamber. Thus a detailed model of the process requires the study of a system in which the
total mass may vary in time. The Smoluchowski coagulation dynamics are also fundamental to
polymerization kinetics, for example in the formation of worm-like micelles [16] (also known
as living polymers), as well as in biochemical applications where they can be used to model
the clustering of red blood cells [17].

We note that others have considered modifications to the coagulation equations in which
matter is added to or removed from the system: in particular, Lushnikov and Kulmala [15],
Crump and Seinfeld [3], Hendriks [9], Kleet [12], Simons [18] and Singh and Rodgers [19].

A general form of the equations which allows the addition of clusters of anyjsiaea rate
Q;(t), and removal, at a rat;c;, is

oo
c1= Q1(t) — Rica — Zak,lckcl

k=1
i1 o (1.5)
. l .
cj=Qj(t)—chj+§Zak,j_kckcj_k—Zak,jckcj j=2.
k=1 k=1

The particular case we study thus correspondBite= 0, Q; = O for j > 2 andR; = 0,
01(t) = (¢t +1p)®. Another commonly studied case is that of constant monomer concentration,
which corresponds t@; = Z]f‘;l agicke1, @ = 0forj > 2, R; = 0. White [22],
Kleet [12] and Crump and Seinfeld [3] were concerned with the existence of steady-state
solutions in systems which have both addition and removal of matter. Crump and Seinfeld
show that a steady-state solution exist§ if”; k¥ Qi (r) < oo for all y andR, > Rk* for
someR > 0,1 > O anda;; < a(jk)'** for somea, v > 0. However, as we shall see, the
explicit removal of material need not be necessary for steady-state behaviour to occur, since
if the aggregation kernel has the right form then mass is lost from the system by gelation, by
which we mean the formation of an infinitely large particle which is not accounted for in the
¢;(t) cluster distribution function [23].

Some values of the exponentead to divergent masses, and these should be interpreted
as being intermediate asymptotic results; others do not lead to divergences and thus have a
wider range of validity. There are three rangesafhich we need to treat separately, namely
(@—-1<w (b)—2 <w < —1and (c)w < —2. The system is naturally divided into these
cases by their different asymptotic behaviour at large times, as will be illustrated in detail in
section 3. We sometimes include a positive congtaint Q4 to avoid a singularity fot < 0.
Our prime focus is on how the large-time behaviour depends on the nature of the injection rate
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(as characterized hy); the form of this behaviour does not depend on the valug.oWe
typically takery = 0.01 in the numerical simulations of section 3 agé= 0 in the analytical
solutions of section 2. Clearly, i6 < —1 then only a finite amount of mass is added to the
system and there are thus similarities with the constant mass case studied earlier [5]. However,
if o > —1 then a¥ — oo the mass contained within the system becomes unbounded;
consequently, a different large-time asymptotic behaviour is observed. In this case there are
similarities with the more commonly studied constant monomer concentration scenario [5].
Depending on the parametersp (for which we assume > S > 0), there are four gelation
regimes: those of no gelatioa ¢ 8 < 1), delayed gelation (k « + 8, @ < 1), instantaneous
gelation (1< o < 1+ B) and complete gelatiorw(> 1 + ). The constraints o and 8
under which each of these occurs are the same as for the constant mass and constant monomer
cases described in [5].

In section 2 exact results are obtained for the ‘integrable’ cases in whistd 8 equal
zero or one. The asymptotic behaviour of cases (a)—(c) will be examined in detail in section 3,
with numerical methods being used to substantiate the three different regimes.

2. Analytical results

The systems witly andg equal to zero or one will be studied in some detail by a generating
function technique. When mass is continuously being injected into the system, exact solutions
are difficult to establish, but some important properties of the cluster size distribution function
can nevertheless be gained for each of these systems.

We define the generating function by

[e¢]
C )= cje’: (2.1)
j=1
For this quantity the zeroth, first and second moments are given by

9 92
Mo(t) = C(0,1) Mi(t) = —a—ZC(z, )= Mo (t) = 8_Z2C(Z’ H)|z=o0. (2.2)

My gives the total number of clusters in the system &fidhe total mass within these clusters,
while M, can be used to detect gelation and to measure the polydispersity of the cluster
distribution (defined by, Mo/ M?).

Our primary concern in this paper is with the large-time asymptotics of the system.
However, initial conditions need to be specified for the exact solutions and the numerical
simulations and for simplicity we take

¢1(0) = 0o cj(0=0 for j>2 (2.3)
Throughout this section we sgt= 0 and we treat only the regime > —1.

21.Casela=8=0

With « = 8 = 0, the substitution of the generating function into (1.1), (1.2) yields
aC
ar

By settingz = 0 in each of (2.4) and its first two derivatives with respect,tequations for

the first three moments can be found, namely
dMo 1, dm, dm,

__ta)__ —:lw _:tw+M2, 25
dr 270 dr dr ! (25)

1
=17e7% — MoC + ECZ' (2.4)
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The mass\; is thus given, as expected, by

w+l

Miy(t) = 0o+ ] w> -1 (2.6)

being the sum of the initial mass and the injected mass, and this implies
w+l 2Q0lw+2 t2w+3

ol @+D@+2)  @+DZ20+3
This is bounded for finite, implying that the system does not gelate.

The zeroth moment in (2.5) satisfies a Riccati equation and so can be determined exactly.
Thus the number of clusterdy(¢) is given by

Mo(t) = 0o + 05t + (2.7)

Al (N2t D12 (@ + 2)) + Lo (v/2t“2/2 ) (w0 + 2))
Mo(t) — ﬁtw/Z w+2 w+2 (28)
Al (V21@ D2/ (0 +2)) +1__1 (V2@2/2/(w + 2))
wherel, is a modified Bessel function and
1 w+l @ w+l
Ao (1) [ wrar (220). 29
The solution takes a much more transparent formJes 0, in which case
! _1( Qo
Mo(r) = ﬁtanh(— +tanh! (—)) . 2.10
o(?) NG NG (2.10)

A large-time expansion of (2.8) yields the limiting behaviddg ~ /2:“/2 ast — oco. For

o > 0 the total number of clusters thus grows unboundedly -as oo, though significantly

more slowly than the mass (2.6); fer< 0 the number of clusters decreases for large time, due
to the rate at which clusters combine exceeding the injection rate. The large-time behaviour
of the polydispersity of the distribution is given by

MoM \/zt(w+2)/2
Mf 20+ 3
Solutions (2.8) foM, corresponding to the first few positive integer values afe plotted
in figure 1.

as t — oo. (2.112)

22.Casella=1,6=0
Substitution of the generating function (2.1) into (1.1), (1.2) produces

aC 1 l10C
— =te = =CMy+=—(My— C). 2.12
” SCML 5 aZ( 0—0O) (2.12)
The mass is again given by (2.6), while the zeroth and second moments satisfy
dMo 1 dMZ
—— =1’ — —MoM — =1+ MM 2.13
= MMy WM (213)

the first of which can be solved in the form

Iy _ . t " 1 . sw+2 d
0(’)_(9" /os exp<§<g°s <w+2>(w+1)>> s)

1 tw+2
_ e 2.14
Xexp( 2(‘?‘” (w+2)<w+1)>> (249
wherebyMy ~ 2(w + 1)/t ast — oo for w > —1. The second moment is given by

tw+2 t Sa)+2
= + + @ — -
M) exp(g"t @+ 2@+ 1)) [Q" /s exp( oot <w+2><w+1>> ds}
(2.15)
showing that the polydispersity grows extremely rapidly in the limit oco.
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Figure 1. Plot of the zeroth moment with =0, 1, 2, 3 fora = 8 = 0.

23. Casellla=p=1

In this case gelation occurs within a finite time, after which (2.6) ceases to be valid due to mass
being lost to the gel. The substitution of the generating function (2.1) into (1.1), (1.2) now
leads to

aC aC 1/3C\°

— =t + M —+=|— . 2.16

ot Yoz 2 < 9z ) ( )
Introducingu = —3C/dz yields

u ou

— =t + (M, —u)—. 2.17

” (M1 —u) 32 ( )

Prior to the gelation time = ¢,, (2.6) holds, implying that the characteristic equations

for (2.17) are

dz 1 du

Z=u—-1-——g! — =1"e", 2.18

a " o+l dt ( )
Gelation occurs whebu /9z becomes unbounded at= 0 (cf [5]). The gelation time can be
obtained from the second moment—differentiating (2.17) with respecatal setting: = 0
gives

o = 1© + M? for r<t, (2.19)

which is a Riccati equation with solution

AJ_ o1 (2D ) (w0 + 2)) + J 1 (2022 ) (o + 2))
v =" (—AJ ;2<2t<w+2>/2/<w +2)+ Lf (2@ 212/ + 2)))
whereJ, is a Bessei function and ‘

1 o w+l
A = ool <w+2> /(a)+2)w+21" <a)+2>. (2.21)

(2.20)
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Figure 2. Plot of the second moment with= 0, 1, 2, 3fora = 8 = 1 andgo = 1.

The evolution ofM5(¢) for oo = 1 andw = 0, 1, 2, 3 can be seen in figure 2, the gelation
time (¢,) corresponding to wher#> blows up. Wherw = 0, (2.19) is separable and it readily
follows that

Mo(t) = tan(t + tan * o) 1, = tan1(1/0o). (2.22)
The number of cluster&fy(¢) satisfies
dMg 1,
—=t"— =M 2.23
dr 2 1 ( )

S0 prior to gelation is given by
tw+1 QO[w+2 t2w+3

v+l (w+Dw+2) 2(w+1)2Q2w+3)’

Fora = g = 1 the numerical approach outlined below leads to a valug e 0.7
whengg = 1, in fair agreement with the value/4 predicted by (2.22) (given the delicacy of
assessing gelation from a truncated system) and thus helps provide confidence in the numerical
results. Figure 3) shows the dependence of the gelation tignen the injection exponent
(w) determined from (2.20) for both the caggs= 1 andgy = 0. The former illustrates that
whenw = 0, the gelation time ig /4 and asv increases, the gelation time asymptotes to the
constant mass result of = 1, which holds when the source term is absent [13]. The gelation
time tends to zero as — —1. For the case in which there is initially no mass present in the
system 6o = 0) we have, ~ (w + 1) asw — —1 andf, — 1 with logz, ~ 2log(w)/w as
® — oc. There is a maximum in the gelation timedat= 3, wherer, = 2.

In figure 3p) the mass at the gelation time is plotted againdtustrating the expected
results that forpg = 1 in the limitw — oo the system behaves as the constant mass case
with My(z,) — 1, and thatM(z,) — oo asw — —1. For the cas@g = 0 we have
Mi(ty) ~ 1/(w+1) asw — —1andMi(z,) ~ w asw — oo. There is a minimum in the mass
at gelation whem = 0, whereM,(t,) = /2.

Little analytical progress is possible for- ¢,.

(2.24)

1 2
Mo(t) = 0o — EQot +
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21 (b)
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-1 0 1 2 3 4

[

Figure 3. (a) The gelation timer() against the injection exponemi); the upper curve corresponds
to the caseg = 0, and the lower t@g = 1; (b) the mass at the gel point against the curve
which rises at large® corresponds to the cagg = 0, the other curve being the cagg= 1. All
graphs correspond to = g = 1.

2.4. Steady-state solutions

In the gelating regimer + 8 > 1, |@ — B| < 1 a steady-state solution exists for= 0,
the system losing mass through gelation at the same rate as it is acquired through injection.
Writing c; () = g; we have

o0

0=1-3> K +k)ag

i . (2.25)
0=3) (kG -k +KG—kggjx—3 ) Gk +i’keg;  j=2

k=1 k=1

Fora = B, this steady state can be constructed explicitly (using the generating function
D(z) = > 32, k" gre*%), giving, in a similar fashion as in [5],
V2@

N o ! EA 2.26
8= a2 — 1 (2.26)
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Here we have: = 1/+4/2, the solution thus being smaller than the constant monomer steady-
state solution fog; = 1 by a factory/2.

3. Asymptotic and numerical results

3.1. Introduction

The methods of the previous section are of limited value for arbittaand 8 and in this
section we instead focus directly on the large-time behaviour. In this limit, the distribution
function often varies slowly witty for large j, in which case the leading-order asymptotic
problem is given by the continuum limit, whereby the discrete equations are approximated by
a continuous formulation of the problem. The large-time asymptotic results are split into three
sections, dependent on the valuaohamely (a)-1 < w, (b)—2 < w < —1and (Cw < —2;
the analysis involves an application of the method of matched asymptotic expansions. For non-
gelating systems, each regime will comprise either one or two outer regions, in which to leading
order the solution satisfies the continuum formulation whereby, writjtg = c(x, 1), we
have
dc(x,t)

ar

x/2
/0 c(y,Da(y,x —y)e(x —y,t) —a(y, x)c(x, t)]dy

—c(x, 1) [/2 a(y, x)e(y, t)dy (3.1)

and an inner regioi = O(1) in which the concentrations are governed by the discrete system.
In gelating systems the ‘inner’ solution is valid for gll For the initial conditions (2.3), we
have

Mi(t) = 0o+ — = (t+10)"™" —1g™)  w#-1 (32

in non-gelating cases (and prior to gelation in cases that exhibit finite-time gelation).
Numerical results for each range®have been obtained [4] for each of the four gelation
regimes, namely no, finite-time, instantaneous and complete gelation. A FORTRAN 77
program using the NAG routine DO2NBF was used to solve the stiff system of ordinary
differential equations which represent a truncated version of the coagulation equations, namely

N-1
c1(t) = (t +10)” — Z ai,1¢xC1 (3.3)
k=1
j—1 N—j
C.‘j(l‘) = %Zak,j,kckck,j — Z Qg jCkCj j = 2. (34)
k=1 k=1

In this truncation no cluster of size greater thélris allowed to form, with no mass being

lost from the system. The maximum cluster size was taken 8 be400 in all simulations,

which is adequate in most cases, and we tgke 0.01. A variety of gelation criteria were
tested, the most robust and accurate was found to be taking gelation to have occurred if the
concentration of the maximum cluster size exceedd liis value being significantly larger

than the numerical errors in the simulation, and the same order of magnitude as is expected
for cy at the gel point, namely; = O(j~@*#*D/2). Gelation is thus detected numerically

at a slightly earlier time than it in fact occurs, because of the truncation of the system at a
finite cluster size. Numerical solutions nevertheless convincingly substantiate the asymptotic
results, as illustrated below. Tests with= 200 and 400 were carried out and little difference
observed (an assessment of different numerical criteria for detecting the onset of gelation is
given in [4]).
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3.2. The case > —1

The leading-order outer solution in non-gelating cases can be assumed to satisfy (3.1) and to
take the form

c=t"Ph() ¢ =x/t? with p—(a+8+Dg=1 (3.5

where the values op andq are specified by ensuring that the mass in the outer region is
consistent with (3.2) in the large-time limit; thus

o) w+l
/o xc(x, 1) dx ~ 1 as t— o (3.6)
(this holds for anyy), which gives
_a)+3+(oz+ﬁ)(a)+l) _ w+2
1—(@+p) 1T @p G-
with
| enwrde = —. (3.8)

Thus the outer solution as— oo is of the form

_ (@+3Ha+p) (w+D)

c~ T IR Q) (= x/1Twm, (3.9)

Figure 4 gives a plot of log ;¢”) against logjr~9)) for the caser = 0.3, 8 = 0.1 (lying
in the non-gelating regime + 8 < 1) with p andg given by (3.7); it can be seen that, at large

region of /

convergence

log (c_jt"p)

20 F _

_25 1 1 1 1 1 1 1 1 1 1
- - - 12
log (j/t"q)

Figure 4. Plot of log(c;#7) againstlog;jt~?)) forw = —0.5,« = 0.3, = 0.1, attimes = 0.2-4

in steps of 0.2, plotted in terms of the similarity variables in (3.9): i.e. (3.5) with % andg = g

The lower ends of the curves move to the left as time increases. The results clearly illustrate
convergence to the outer similarity solution.
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times, the curves become almost indistinguishable. This indicates that the self-similar form is
being approached, the limiting curve being given by the fundii@n in (3.9).
In the inner regiory = O(1), a quasi-steady balance holds in (1.1), (1.2), with

cj ~1”%g; t — oo (3.10)

where theg; are independent of time and®f being given by (2.25) (when substituted into the
governing equations (1.1) and (1.2), (3.10) implies that the time derivatives are negligible in
the large-time limit, the aggregation of smaller particles to forpacduster being balanced by
the aggregation of-clusters to form larger particles). Expression (3.10) can thus be regarded
as a generalization of the steady-state solution which applies in the special eaBe

The matching between inner and outer solutions is as follows. We have for (2.25) that

—(a+p+3)/2

g ~Aj as j— oo (3.11)

for some constant; whena = 8, (2.26) givesA = 1/+/2. Because the outer limit of the
inner solution is given by (3.11), we require that the inner limit of the outer solution satisfy

h(c) ~ Ag~@B+3)/2 as ¢ — 0" (3.12)
and from matching between (3.11) and (3.12) we have

_ wt3HwtD)(@+p)

cj~ Atw/ij(a+ﬁ+3)/2 — Ar T-@*h) (j/l‘l‘n()‘:fm )*(a+ﬂ+3)/2 (313)

as required.

The convergence for largeto the postulated inner solution (3.10) can also be confirmed
numerically (see [4]). In the gelating regime the solution (3.10) is uniformly valid for large
times. This is illustrated in figure 5, which shows ter= 0.9, 8 = 0.5 how the solution

log ( c_j tN-w/2))

log j

Figure 5. Plot of Iog(cjt*w/z) against logi at timest = 0.2—4, in steps of 0.2, fap = —0.5 and
o = 0.9, 8 = 0.5. Effects due to truncation are evident for lajgat the later times, but elsewhere
convergence to (3.10) is exhibited.
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I- region of matching D E
between inner
and intermediate

'
[}

log ( c_j tA-w/2) )

_18 1 1 1 1 1

3
log j

Figure 6. Plot of Iog(cjt*‘”/z) against logi at timesr = 0.2—4, in steps of 0.2, fap = —1.5 and
o = 0.3, 8 = 0.1, showing convergence to the inner (quasi-steady) solution.

converges for large time to a single curve, which on the log—log plot approaches a straight line
with gradient—2.4 for large enough cluster sizes. This is in close agreement with (3.11), since
—(@+B+3)/2=-22.

Forw = —1, the expression (3.10) again describes the inner region, but because (3.6) is
replaced by

[o.¢]
/ xc(x,t)dx ~ logt as t — oo (3.14)
0
the outer similarity solution takes the form

¢~ 1" Tww Iog‘% th(¢) = x/tﬁlw Iogﬁw t (3.15)
in place of (3.9).

3.3. Thecase-2 < w < —1

In this case there are three regions, inner, intermediate and outer. The leading-order inner
solution is of the quasi-steady form (3.1), this being illustrated numerically in figure 6. The
intermediate and outer solutions are given to leading order by similarity solutions of (3.10),
which we write in the form

intermediate c=1t""h() =x/t with p—(¢+B8+Dg=1 (3.16)
outer c=t"g(n) n=ux/t" with m—(a+g+DHn=1 (3.17)
Since the inner solution is again of the quasi-steady form (3.10), matching requires, as before,

that p andg in (3.16) be given by (3.7). This is demonstrated in figure 7, where results
foro = —15, « = 0.3 andp = 0.1 are displayed as a plot of lagt~1%%°) against
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5 T T T T T T

intermediate regime

£
1
o
o)
ke]
-10 i
-15 | i
.20 1 1 1 1 1 1
-2 -1 0 3 4 5

1 2
log (j/t'q)

Figgre 7. PIo_t of Iog(c_]-tp) against Iogj/z‘l)_ with p = %3 andg = % showing convergence of

the intermediate solution at times= 0.2—4, in steps of 0.2, fap = —1.5 anda = 0.3, 8 = 0.1.

Curves corresponding to later times are higher up and agree with the intermediate asymptotic result
over a greater horizontal interval.

log(jz—%%08)  the curves at later times approaching a single curve for intermediate cluster
size.

The values ofn andn in (3.17) for the outer solution are determined by requiring from
(3.2) that

/0 xc(x, t)dx ~ oo — — 1t3’+1 as t — oo (3.18)
yielding (as in the constant mass case [5])
2 1
— e 3.19
"Tite@rp T 1-@p) (349
with
dn = po — g, 3.20
/o ng () dn = po — ———1g (3.20)

We note that > ¢, as required, fow < —1, 0+ 8 < 1.
Figure 8 illustrates the outer asymptotic form

c(x, 1) ~ 1w g(n) N = x/tTwn as t— oo n = O(1) (3.21)

the curves there becoming superimposed for large-time and large cluster size. Matching the
outer solution to the intermediate one gives

208~ @B+
pr as n— 0"

T At pET =1 02
h(g) ~ as ¢ — +oo
QA—-(@+p)@+BpB(l—a,1-p)

gm ~
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5 T T T T T T T T

matching
region

log (c_jt"m)
=
T

_25 1 1 1 1 1 1 1 1
. . 1 2 3 4 5 6
log (j/t*n)

Figure 8. Plot of log(c;¢™) against logj/t") with m = %0 andn = % showing the outer solution
at timesr = 0.2—4, in steps of 0.2, fo» = —1.5 anda = 0.3, 8 = 0.1. As time increases the
lowest portion of each curve moves to the left

the first of which follows from [5];4(¢) again satisfies (3.12) as the condition for matching
with the inner solution. The result (3.22) can be compared with the numerics in figure 8
where, for intermediatg, a straight line of gradient arouneLl.2 is approached, in reasonable
agreement with the value (¢ + 8 + 1) = —1.4 predicted by asymptotics. Similarly, an
indication of the validity of (3.11) is provided by figure 6 where the gradient in the relevant
regime is approximately-1.4; the value given by the asymptotic resulfe + 8 + 3)/2 is

—1.7, so the agreement is fair, the numerical results seeming to consistently overestimate the
gradient somewhat.

In the gelating regime + 8 > 1, only the ‘inner’ region is present, numerical illustrations
being given in [4]. We note from (3.7) that— 0 asw — —2, suggesting that the inner and
intermediate regions will merge; we shall now see that this is indeed the case. Similarly, as
w — —1we have: — ¢ and the intermediate and outer regions merge to give the two-region
structure discussed in section 3.2.

3.4. The case < —2

With v < —2, the input of monomers at large times is so slow that the large-time asymptotic
structure of the solution is identical to that of the constant mass case studied earlier (see
section 3 of [5]). To summarize this, fgr= O(1), there is an inner solution of the separable
form

cjt) ~ fi/t as t— oo. (3.23)

For gelating cases this solution is uniformly valid afid ~ Aj~©@**3/2 asj — oo for
some constand. In non-gelating cases the solution (3.23) is not uniformly valid and an
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Figure 9. Plot of log(tc;) against logi showing the inner solution at times= 0.2—4, in steps
of 0.2, foro = —2.5 anda = 0.3, 8 = 0.1. At small j, the quantity log¢c;) decreases with
increasing time.

outer solution which exhibits a more rapid decay at lajge x is required (in particular,
to avoid divergences in the density). This outer solution satisfies the continuum limit (3.1)
of the coagulation equations, having the self-similar form (3.17), (3.19) and satisfying the
conservation of mass conditions (3.18), (3.20). Matching the inner (3.23) and outer (3.17)
solutions requires, in view of (3.22), that
2aﬂj—(0¢+ﬁ+l)
/; Q—-(a+B)(@+p)Bl—a,1-p)

These results are illustrated in figures 9 and 10dfoe 0.3 andg = 0.1. Figure 10
gives plots of Iogc_,-tﬁ) against Iogjt’m), showing the concentrations with large
j approaching a single curve at large times. Figure 9 illustrates the inner solution (3.23),
approaching a straight line with gradientl.2 for large enougly, which may be compared
with the value of-1.4 predicted by (3.24). In both figures, effects due to the truncation of the
system are seen in the slight increase in concentrations at large cluster sizes.

Forw = —2, we conjecture that the asymptotic structure is as just described, but the
function f; in (3.23) (which is independent of for < —2) differs because a full balance
occursin (1.1), (1.2); the source term and the time derivatives are of the same arderas
(namely Qr~2)) in the critical casey = —2.

as j — oo. (3.24)

3.5. Complete gelatiorw(— 8 > 1)

Whena and g lie in the complete gelation regime, the infinite system (1.1), (1.2) has no
solution; however, for the truncated system (3.3) a solution does exist and can be readily
found numerically, providing insight into the non-existence of solutions to the infinite system.
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Figure 10. Plot of log(c;#™) against logj/¢") with m = 1—30 andn = % showing the outer solution
(3.21) at times = 0.2—4, in steps of 0.2, fap = —2.5 ande = 0.3, 8 = 0.1.

Figure 11 shows that even at small times, the majority of the system’s mass is in the largest
cluster size. Monomers rapidly coagulate to form dimers, leading to a preponderance of dimers
over monomers and a consequent domination of the system by clusters of even aggregation
number. The resulting oscillatory profile is evident in figure 11. The mass of the gel (which
we here define to b&'cy) and the total mass of the system are plotted in figure 12. The gel
rapidly takes up nearly the entire mass; this substantiates our assumption of complete gelation
in the infinite system, whereby all the mass is in the form of gel, witk= O for finite ;.

3.6. Summary

Fora > B > 0, the following regimes arise in the description of the large-time behaviour (we
shall not discuss the borderline cases here).

(i) Complete gelationr — 8 > 1. All the mass resides in the infinite gel particle.

(i) Incomplete gelatior — 8 < 1, + 8 > 1. Gelation occurs (either instantaneously
(o > 1) or after some finite timex( < 1)) but the mass is not all transferred into the gel
in finite time. We have

cj(t)y ~t71f; as t— oo w< -2 (3.25)
c;(t) ~1*%g; as t— oo 0> =2 (3.26)
for all j, with (3.25) satisfying the full system (1.1), (1.2), except that the source term is
negligible, and with (3.26) satisfying the quasi-steady version of (1.1), (1.2), in which the
left-hand sides are negligible. Th andg; are each independent of
(iif) No gelatione + 8 < 1. The large-time forms (3.25), (3.26) remain valid foe= O(1),
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Figure 11. Plot of the numerical solution lag against logj for v = —1.8 anda = 2.5, 8 = 1.0,

at timest = 0.2—4 in steps of 0.2. The concentrations decrease with time for sufficiently small
log j butincrease for large log

but different expressions hold for largespecifically

cj(t) ~ 17T g(j/tTwm) as t— oo with j = O(=wn) w<—2
(3.27)
t7Ph(j/t?) as t— oo with j =07
€~ t’ﬁg(]‘/tﬁ) as t—> oo with j= O(tﬁw)
—2<w<-1 (3.28)
cj(®) ~t7Ph(j/t?) as t—> oo with j =09 —-l<w (3.29)

wherep andg are given by (3.7) (implying < ¢ < 1 for -2 < w < —1). Matching
dictates that

h(c) ~ Ap~@B+3)/2 as {— 0" (3.30)

2ufn~@+B*D

A—=(a+p)(@+p)Bl—a,1-p)
so the two similarity solutions can be characterized by the distinct power laws which
describe their local behaviour. For giverandg, the functiong (n) (which is independent
of w) is the same in (3.28) asitis in (3.29), wiglin) decaying exponentially ag— oc;
the same functiog(n) also arises in the constant mass case (see [5]). However, in (3.28)
we have

as n— 0" (3.31)

gm) ~

—(a+B+1)
h(g) ~ 2apt as ¢ — +oo (3.32)

Q=(e+B)(@+p)B(l—a,1-p)
thereby matching with (3.31), whereag;) is exponentially decaying as — +oo in
(3.29).
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Figure 12. Plot of the amount of mass in the total system and the amount of mass within the gel
foro = —1.8 anda = 2.5, 8 = 1.0.

4. Discussion

In this paper we have used a combination of analytical, numerical and asymptotic methods
to investigate the coagulation equations with an input term which is dependent on time. Our
choice of injection rates includes (as the special case 0) mass being introduced at a
constant rate. The ‘integrable’ systems, wher@ndg equal zero or one, do not appear to be
solvable completely by analytical means, but the zeroth, first and second moments have been
found exactly. Forx = 8 = 1 and—1 < w the calculation of the second moment enables, in
particular, the gelation time to be found.

For arbitrary positivex and 8, the large-time asymptotics have been investigated. Such
large-time results are applicable to more general injection rates whérgby~ * ast — oo
with Q;(¢) decaying sufficiently rapidly foj > 2. A single regime is in force for all cluster
sizes in the post-gelation phase of the reaction, with a more complex asymptotic structure
present in systems which do not gelate. In the latter systems, there are three regions present
for -2 < w < =1, two forw > —1 and two fore < —2. In this last case, mass is added
so slowly that for large time the system behaves identically to the constant mass case studied
earlier [5].

In systems which do not gelate, the large-time behaviour of the ndégs)) is simply
the sum of the initial mass and the mass added, as given by (3.2). Mass is input in the form
of monomers, so it is interesting to note the behaviour of the monomer concentration; in cases
wherew > —2, this is governed for large time by an inner quasi-steady state solution in which
c1(t) ~ t°/?g,, whereas in cases whesie < —2 the inner solution has the similarity form
cj(t) ~ fi/t.

Also worthy of note is the behaviour of the number of clustéfg(¢)), the mass¥(¢))
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and the second moment of the cluster distribution functidp(()), for systems which do not
gelate. Fow > —1,

w+l

o0
1
Mo(t) ~ ) g;t*? My(t) ~
= o+l

Moy(t) ~ / 2h(¢) gt s
0

as t — 0o (4.1)

the functioni(¢) being given by (3.9)M, is dominated by the inner region ah and M,
w+2)(1+a+t,

by the outer. The polydispersityv(zMo/Mlz) thus scales with %=« in the large-time

limit. For —2 < w < —1, the situation is a little more complicated since in the large-time

asymptotics there are three size scales of significance, with the inner region domiviating

and the outeM; and M, with

00 w+l

Mo(t) ~ ) " gjt”/*  Mai(t) ~ oo — =2
= o+l

o0
1
Mo(1) ~ / n?g(n) dnt =
0

as t — oo. 4.2)

In this case the polydispersity increases without bound, scaling\ﬁ/Tﬁﬁ<5+ﬂ> ast — oo. For
w < —2, only the expression fa¥fy changes in (4.2), giving

w+l

o0
1
Mo(t) ~ Y fit™t Mi(t) ~ 0o — >
; w+1l

as t — oo. (4.3)

o0
1
Mo(t) ~ / n’g(n) dyt =
0

The polydispersity thus scales With'es ast — oo. In these systems we have coagulation
and monomer addition occurring simultaneously, both causing the cluster distribution function
to change. In all cases the polydispersity increases without bound; it is natural to conjecture
that polydispersity is an increasing function of time in such systems. The results of section 2.1
are consistent with those just noted; the aase 1, 8 = 0 is non-generic (as noted in [5]), so
the results of section 2.2 are not embodied in (4.1)—(4.3), which requirg < 1.

For each regime the numerical results have been shown to substantiate the asymptotics.
If the parameters of the aggregation kernel allow gelation, then after gelation there is only one
asymptotic region present, whatever the valueofA numerical solution for the truncated
system in the complete gelation regime has been included; this shows that the gel (the largest
cluster) very rapidly absorbs the vast majority of the mass, corresponding to the infinite system
(1.1), (1.2) having no solution.
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