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Abstract. We study a system of equations which models the formation of clusters by coagulation,
with particles of unit size being injected at a time-dependent rate. We observe that the criteria under
which gelation occurs are the same as for the constant mass and constant monomer cases, which
have been studied previously. We identify a variety of types of behaviour in the large-time limit,
depending on the coagulation kernel and on the rate at which monomer is introduced into the
system. The results are obtained by means of exact (generating function) techniques, matched
asymptotic expansions and numerical simulations.

1. Introduction

We examine the Smoluchowski coagulation equations [20] with monomers being injected into
the system at a rateQ(t + t0)ω, so that the usual system generalizes to

ċ1 = Q(t + t0)
ω −

∞∑
k=1

ak,1ckc1 (1.1)

ċj = 1
2

j−1∑
k=1

ak,j−kckcj−k −
∞∑
k=1

ak,j ckcj j > 2 (1.2)

wherecj (t) is the concentration of clusters of sizej at timet , and the coagulation kernelak,j
specifies the rate at which clusters of sizesj andk coalesce. In the analysis that follows

ak,j = 1
2(j

αkβ + jβkα) (1.3)

will be adopted. The constantQ can, without loss of generality, be scaled to unity, which
henceforth we do. The moments of the distribution are defined by

Mp(t) =
∞∑
k=1

kpck(t) p = 0, 1, 2, . . . . (1.4)

A rigorous foundation for the study of the Smoluchowski coagulation equations has been
provided by Ball and Carr [1], the existence and uniqueness of solutions being proved for
aggregation kernels of the formaj,k = jα + kα andaj,k = (jk)α. In the latter case, it is shown
that gelation (mass loss) occurs ifα > 1

2 and does so instantaneously ifα > 1. These results
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were extended to more general kernels by Carr and da Costa [2], who proved that instantaneous
gelation occurs for any coefficients satisfyingjβ+kβ < aj,k < (jk)α withα > β > 1. Though
these papers consider only the constant mass formulation of the problem, similar results hold
for the problem in which mass is continuously added to the system.

The physical applications of this current work include the modelling of phase transitions
in which the monomer is released at a time-dependent rate, for example, due to the decay of
a precursor chemical, as occurs in cement hydration [21]. This method of releasing monomer
into the coagulating system is in contrast to both (i) the constant monomer case, which models
the pool chemical approximation where a supply of monomer is assumed to act in such a
way as to maintain some artificially fixed concentration; and with (ii) the constant mass case,
in which monodisperse initial conditions are typically assumed, so that att = 0, the total
mass of the system is instantaneously present in monomeric form and undergoes coagulation
as time progresses. The Smoluchowski coagulation equations are used in modelling aerosol
kinetics [11]. During the injection of a stream of particles into a chamber, matter injected at
the beginning may start undergoing coagulation before all the matter has been introduced to
the chamber. Thus a detailed model of the process requires the study of a system in which the
total mass may vary in time. The Smoluchowski coagulation dynamics are also fundamental to
polymerization kinetics, for example in the formation of worm-like micelles [16] (also known
as living polymers), as well as in biochemical applications where they can be used to model
the clustering of red blood cells [17].

We note that others have considered modifications to the coagulation equations in which
matter is added to or removed from the system: in particular, Lushnikov and Kulmala [15],
Crump and Seinfeld [3], Hendriks [9], Kleet [12], Simons [18] and Singh and Rodgers [19].
A general form of the equations which allows the addition of clusters of any sizej , at a rate
Qj(t), and removal, at a rateRjcj , is

ċ1 = Q1(t)− R1c1−
∞∑
k=1

ak,1ckc1

ċj = Qj(t)− Rjcj + 1
2

j−1∑
k=1

ak,j−kckcj−k −
∞∑
k=1

ak,j ckcj j > 2.

(1.5)

The particular case we study thus corresponds toRj = 0,Qj = 0 for j > 2 andR1 = 0,
Q1(t) = (t + t0)ω. Another commonly studied case is that of constant monomer concentration,
which corresponds toQ1 =

∑∞
k=1 ak,1ckc1, Qj = 0 for j > 2, Rj = 0. White [22],

Kleet [12] and Crump and Seinfeld [3] were concerned with the existence of steady-state
solutions in systems which have both addition and removal of matter. Crump and Seinfeld
show that a steady-state solution exists if

∑∞
k=1 k

γQk(t) < ∞ for all γ andRk > Rkλ for
someR > 0, λ > 0 andaj,k < a(jk)ν+λ for somea, ν > 0. However, as we shall see, the
explicit removal of material need not be necessary for steady-state behaviour to occur, since
if the aggregation kernel has the right form then mass is lost from the system by gelation, by
which we mean the formation of an infinitely large particle which is not accounted for in the
cj (t) cluster distribution function [23].

Some values of the exponentω lead to divergent masses, and these should be interpreted
as being intermediate asymptotic results; others do not lead to divergences and thus have a
wider range of validity. There are three ranges ofω which we need to treat separately, namely
(a)−1 < ω, (b)−2 < ω < −1 and (c)ω < −2. The system is naturally divided into these
cases by their different asymptotic behaviour at large times, as will be illustrated in detail in
section 3. We sometimes include a positive constantt0 inQ1 to avoid a singularity forω < 0.
Our prime focus is on how the large-time behaviour depends on the nature of the injection rate
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(as characterized byω); the form of this behaviour does not depend on the value oft0. We
typically taket0 = 0.01 in the numerical simulations of section 3 andt0 = 0 in the analytical
solutions of section 2. Clearly, ifω < −1 then only a finite amount of mass is added to the
system and there are thus similarities with the constant mass case studied earlier [5]. However,
if ω > −1 then ast → ∞ the mass contained within the system becomes unbounded;
consequently, a different large-time asymptotic behaviour is observed. In this case there are
similarities with the more commonly studied constant monomer concentration scenario [5].
Depending on the parametersα, β (for which we assumeα > β > 0), there are four gelation
regimes: those of no gelation (α +β < 1), delayed gelation (1< α +β, α < 1), instantaneous
gelation (1< α < 1 + β) and complete gelation (α > 1 + β). The constraints onα andβ
under which each of these occurs are the same as for the constant mass and constant monomer
cases described in [5].

In section 2 exact results are obtained for the ‘integrable’ cases in whichα andβ equal
zero or one. The asymptotic behaviour of cases (a)–(c) will be examined in detail in section 3,
with numerical methods being used to substantiate the three different regimes.

2. Analytical results

The systems withα andβ equal to zero or one will be studied in some detail by a generating
function technique. When mass is continuously being injected into the system, exact solutions
are difficult to establish, but some important properties of the cluster size distribution function
can nevertheless be gained for each of these systems.

We define the generating function by

C(z, t) =
∞∑
j=1

cj (t)e
−jz. (2.1)

For this quantity the zeroth, first and second moments are given by

M0(t) = C(0, t) M1(t) = − ∂
∂z
C(z, t)|z=0 M2(t) = ∂2

∂z2
C(z, t)|z=0. (2.2)

M0 gives the total number of clusters in the system andM1 the total mass within these clusters,
while M2 can be used to detect gelation and to measure the polydispersity of the cluster
distribution (defined byM2M0/M

2
1).

Our primary concern in this paper is with the large-time asymptotics of the system.
However, initial conditions need to be specified for the exact solutions and the numerical
simulations and for simplicity we take

c1(0) = %0 cj (0) = 0 for j > 2. (2.3)

Throughout this section we sett0 = 0 and we treat only the regimeω > −1.

2.1. Case I:α = β = 0

With α = β = 0, the substitution of the generating function into (1.1), (1.2) yields

∂C

∂t
= tωe−z −M0C +

1

2
C2. (2.4)

By settingz = 0 in each of (2.4) and its first two derivatives with respect toz, equations for
the first three moments can be found, namely

dM0

dt
= tω − 1

2
M2

0
dM1

dt
= tω dM2

dt
= tω +M2

1 . (2.5)
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The massM1 is thus given, as expected, by

M1(t) = %0 +
tω+1

ω + 1
ω > −1 (2.6)

being the sum of the initial mass and the injected mass, and this implies

M2(t) = %0 + %2
0t +

tω+1

ω + 1
+

2%0t
ω+2

(ω + 1)(ω + 2)
+

t2ω+3

(ω + 1)2(2ω + 3)
. (2.7)

This is bounded for finitet , implying that the system does not gelate.
The zeroth moment in (2.5) satisfies a Riccati equation and so can be determined exactly.

Thus the number of clustersM0(t) is given by

M0(t) =
√

2tω/2
(
AI− ω+1

ω+2
(
√

2t (ω+2)/2/(ω + 2)) + I ω+1
ω+2
(
√

2t (ω+2)/2/(ω + 2))

AI 1
ω+2
(
√

2t (ω+2)/2/(ω + 2)) + I− 1
ω+2
(
√

2t (ω+2)/2/(ω + 2))

)
(2.8)

whereIν is a modified Bessel function and

A = %00

(
1

ω + 2

)/
2
ω+1
ω+2 (ω + 2)

ω
ω+20

(
ω + 1

ω + 2

)
. (2.9)

The solution takes a much more transparent form forω = 0, in which case

M0(t) =
√

2 tanh

(
t√
2

+ tanh−1

(
%0√

2

))
. (2.10)

A large-time expansion of (2.8) yields the limiting behaviourM0 ∼
√

2tω/2 ast → ∞. For
ω > 0 the total number of clusters thus grows unboundedly ast → ∞, though significantly
more slowly than the mass (2.6); forω < 0 the number of clusters decreases for large time, due
to the rate at which clusters combine exceeding the injection rate. The large-time behaviour
of the polydispersity of the distribution is given by

M2M0

M2
1

∼
√

2t (ω+2)/2

2ω + 3
as t →∞. (2.11)

Solutions (2.8) forM0 corresponding to the first few positive integer values ofω are plotted
in figure 1.

2.2. Case II:α = 1, β = 0

Substitution of the generating function (2.1) into (1.1), (1.2) produces
∂C

∂t
= tωe−z − 1

2
CM1 +

1

2

∂C

∂z
(M0 − C). (2.12)

The mass is again given by (2.6), while the zeroth and second moments satisfy
dM0

dt
= tω − 1

2
M0M1

dM2

dt
= tω +M1M2 (2.13)

the first of which can be solved in the form

M0(t) =
(
%0 +

∫ t

0
sω exp

(
1

2

(
%0s +

sω+2

(ω + 2)(ω + 1)

))
ds

)
× exp

(
−1

2

(
%0t +

tω+2

(ω + 2)(ω + 1)

))
(2.14)

wherebyM0 ∼ 2(ω + 1)/t ast →∞ for ω > −1. The second moment is given by

M2(t) = exp

(
%0t +

tω+2

(ω + 2)(ω + 1)

)[
%0 +

∫ t

0
sω exp

(
−%0s − sω+2

(ω + 2)(ω + 1)

)
ds

]
(2.15)

showing that the polydispersity grows extremely rapidly in the limitt →∞.
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Figure 1. Plot of the zeroth moment withω = 0, 1, 2, 3 for α = β = 0.

2.3. Case III:α = β = 1

In this case gelation occurs within a finite time, after which (2.6) ceases to be valid due to mass
being lost to the gel. The substitution of the generating function (2.1) into (1.1), (1.2) now
leads to

∂C

∂t
= tωe−z +M1

∂C

∂z
+

1

2

(
∂C

∂z

)2

. (2.16)

Introducingu = −∂C/∂z yields
∂u

∂t
= tωe−z + (M1− u)∂u

∂z
. (2.17)

Prior to the gelation timet = tg, (2.6) holds, implying that the characteristic equations
for (2.17) are

dz

dt
= u− 1− 1

ω + 1
tω+1 du

dt
= tωe−z. (2.18)

Gelation occurs when∂u/∂z becomes unbounded atz = 0 (cf [5]). The gelation time can be
obtained from the second moment—differentiating (2.17) with respect toz and settingz = 0
gives

dM2

dt
= tω +M2

2 for t < tg (2.19)

which is a Riccati equation with solution

M2(t) = tω/2
(
AJ− ω+1

ω+2
(2t (ω+2)/2/(ω + 2)) + Jω+1

ω+2
(2t (ω+2)/2/(ω + 2))

−AJ 1
ω+2
(2t (ω+2)/2/(ω + 2)) + J− 1

ω+2
(2t (ω+2)/2/(ω + 2))

)
(2.20)

whereJν is a Bessel function and

A = %00

(
1

ω + 2

)/
(ω + 2)

ω
ω+20

(
ω + 1

ω + 2

)
. (2.21)
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Figure 2. Plot of the second moment withω = 0, 1, 2, 3 for α = β = 1 and%0 = 1.

The evolution ofM2(t) for %0 = 1 andω = 0, 1, 2, 3 can be seen in figure 2, the gelation
time (tg) corresponding to whereM2 blows up. Whenω = 0, (2.19) is separable and it readily
follows that

M2(t) = tan(t + tan−1 %0) tg = tan−1(1/%0). (2.22)

The number of clustersM0(t) satisfies
dM0

dt
= tω − 1

2
M2

1 (2.23)

so prior to gelation is given by

M0(t) = %0 − 1

2
%2

0t +
tω+1

ω + 1
− %0t

ω+2

(ω + 1)(ω + 2)
− t2ω+3

2(ω + 1)2(2ω + 3)
. (2.24)

For α = β = 1 the numerical approach outlined below leads to a value oftg ≈ 0.7
when%0 = 1, in fair agreement with the valueπ/4 predicted by (2.22) (given the delicacy of
assessing gelation from a truncated system) and thus helps provide confidence in the numerical
results. Figure 3(a) shows the dependence of the gelation timetg on the injection exponent
(ω) determined from (2.20) for both the cases%0 = 1 and%0 = 0. The former illustrates that
whenω = 0, the gelation time isπ/4 and asω increases, the gelation time asymptotes to the
constant mass result oftg = 1, which holds when the source term is absent [13]. The gelation
time tends to zero asω→ −1. For the case in which there is initially no mass present in the
system (%0 = 0) we havetg ∼ (ω + 1) asω → −1 andtg → 1 with logtg ∼ 2 log(ω)/ω as
ω→∞. There is a maximum in the gelation time atω = 3

2, wheretg = 2.
In figure 3(b) the mass at the gelation time is plotted againstω illustrating the expected

results that for%0 = 1 in the limit ω → ∞ the system behaves as the constant mass case
with M1(tg) → 1, and thatM1(tg) → ∞ asω → −1. For the case%0 = 0 we have
M1(tg) ∼ 1/(ω+ 1) asω→−1 andM1(tg) ∼ ω asω→∞. There is a minimum in the mass
at gelation whenω = 0, whereM1(tg) = π/2.

Little analytical progress is possible fort > tg.
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(a)

(b)

Figure 3. (a) The gelation time (tg) against the injection exponent (ω): the upper curve corresponds
to the case%0 = 0, and the lower to%0 = 1; (b) the mass at the gel point againstω: the curve
which rises at largerω corresponds to the case%0 = 0, the other curve being the case%0 = 1. All
graphs correspond toα = β = 1.

2.4. Steady-state solutions

In the gelating regimeα + β > 1, |α − β| < 1 a steady-state solution exists forω = 0,
the system losing mass through gelation at the same rate as it is acquired through injection.
Writing cj (t) = gj we have

0= 1− 1
2

∞∑
k=1

(kβ + kα)gkg1

0= 1
4

j−1∑
k=1

(kα(j − k)β + kβ(j − k)α)gkgj−k − 1
2

∞∑
k=1

(jαkβ + jβkα)gkgj j > 2.

(2.25)

For α = β, this steady state can be constructed explicitly (using the generating function
D(z) =∑∞k=1 k

αgke−kz), giving, in a similar fashion as in [5],

gj =
√

2(2j)!j−α

j !j !22j (2j − 1)
. (2.26)
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Here we haveg1 = 1/
√

2, the solution thus being smaller than the constant monomer steady-
state solution forg1 = 1 by a factor

√
2.

3. Asymptotic and numerical results

3.1. Introduction

The methods of the previous section are of limited value for arbitraryα andβ and in this
section we instead focus directly on the large-time behaviour. In this limit, the distribution
function often varies slowly withj for largej , in which case the leading-order asymptotic
problem is given by the continuum limit, whereby the discrete equations are approximated by
a continuous formulation of the problem. The large-time asymptotic results are split into three
sections, dependent on the value ofω, namely (a)−1< ω, (b)−2< ω < −1 and (c)ω < −2;
the analysis involves an application of the method of matched asymptotic expansions. For non-
gelating systems, each regime will comprise either one or two outer regions, in which to leading
order the solution satisfies the continuum formulation whereby, writingcj (t) = c(x, t), we
have
∂c(x, t)

∂t
=
∫ x/2

0
c(y, t)[a(y, x − y)c(x − y, t)− a(y, x)c(x, t)] dy

−c(x, t)
∫ ∞
x/2
a(y, x)c(y, t)dy (3.1)

and an inner regionj = O(1) in which the concentrations are governed by the discrete system.
In gelating systems the ‘inner’ solution is valid for allj . For the initial conditions (2.3), we
have

M1(t) = %0 +
1

ω + 1
((t + t0)

ω+1− tω+1
0 ) ω 6= −1 (3.2)

in non-gelating cases (and prior to gelation in cases that exhibit finite-time gelation).
Numerical results for each range ofω have been obtained [4] for each of the four gelation

regimes, namely no, finite-time, instantaneous and complete gelation. A FORTRAN 77
program using the NAG routine D02NBF was used to solve the stiff system of ordinary
differential equations which represent a truncated version of the coagulation equations, namely

ċ1(t) = (t + t0)
ω −

N−1∑
k=1

ak,1ckc1 (3.3)

ċj (t) = 1
2

j−1∑
k=1

ak,j−kckck−j −
N−j∑
k=1

ak,j ckcj j > 2. (3.4)

In this truncation no cluster of size greater thanN is allowed to form, with no mass being
lost from the system. The maximum cluster size was taken to beN = 400 in all simulations,
which is adequate in most cases, and we taket0 = 0.01. A variety of gelation criteria were
tested, the most robust and accurate was found to be taking gelation to have occurred if the
concentration of the maximum cluster size exceeds 10−7, this value being significantly larger
than the numerical errors in the simulation, and the same order of magnitude as is expected
for cN at the gel point, namelycj = O(j−(α+β+1)/2). Gelation is thus detected numerically
at a slightly earlier time than it in fact occurs, because of the truncation of the system at a
finite cluster size. Numerical solutions nevertheless convincingly substantiate the asymptotic
results, as illustrated below. Tests withN = 200 and 400 were carried out and little difference
observed (an assessment of different numerical criteria for detecting the onset of gelation is
given in [4]).



The Smoluchowski coagulation equations with continuous injection7753

3.2. The caseω > −1

The leading-order outer solution in non-gelating cases can be assumed to satisfy (3.1) and to
take the form

c = t−ph(ζ ) ζ = x/tq with p − (α + β + 1)q = 1 (3.5)

where the values ofp andq are specified by ensuring that the mass in the outer region is
consistent with (3.2) in the large-time limit; thus∫ ∞

0
xc(x, t)dx ∼ tω+1

ω + 1
as t →∞ (3.6)

(this holds for anyt0), which gives

p = ω + 3 + (α + β)(ω + 1)

1− (α + β)
q = ω + 2

1− (α + β)
(3.7)

with ∫ ∞
0
ζh(ζ ) dζ = 1

ω + 1
. (3.8)

Thus the outer solution ast →∞ is of the form

c ∼ t− (ω+3+(α+β)(ω+1))
1−(α+β) h(ζ ) ζ = x/t ω+2

1−(α+β) . (3.9)

Figure 4 gives a plot of log(cj tp) against log(j t−q)) for the caseα = 0.3,β = 0.1 (lying
in the non-gelating regimeα +β < 1) withp andq given by (3.7); it can be seen that, at large

Figure 4. Plot of log(cj tp) against log(j t−q )) forω = −0.5,α = 0.3,β = 0.1, at timest = 0.2–4
in steps of 0.2, plotted in terms of the similarity variables in (3.9): i.e. (3.5) withp = 9

2 andq = 5
2 .

The lower ends of the curves move to the left as time increases. The results clearly illustrate
convergence to the outer similarity solution.
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times, the curves become almost indistinguishable. This indicates that the self-similar form is
being approached, the limiting curve being given by the functionh(ζ ) in (3.9).

In the inner regionj = O(1), a quasi-steady balance holds in (1.1), (1.2), with

cj ∼ tω/2gj t →∞ (3.10)

where thegj are independent of time and ofω, being given by (2.25) (when substituted into the
governing equations (1.1) and (1.2), (3.10) implies that the time derivatives are negligible in
the large-time limit, the aggregation of smaller particles to form aj -cluster being balanced by
the aggregation ofj -clusters to form larger particles). Expression (3.10) can thus be regarded
as a generalization of the steady-state solution which applies in the special caseω = 0.

The matching between inner and outer solutions is as follows. We have for (2.25) that

gj ∼ Aj−(α+β+3)/2 as j →∞ (3.11)

for some constantA; whenα = β, (2.26) givesA = 1/
√

2π . Because the outer limit of the
inner solution is given by (3.11), we require that the inner limit of the outer solution satisfy

h(ζ ) ∼ Aζ−(α+β+3)/2 as ζ → 0+ (3.12)

and from matching between (3.11) and (3.12) we have

cj ∼ Atω/2j−(α+β+3)/2 = At− ω+3+(ω+1)(α+β)
1−(α+β) (j/t

ω+2
1−(α+β) )−(α+β+3)/2 (3.13)

as required.
The convergence for larget to the postulated inner solution (3.10) can also be confirmed

numerically (see [4]). In the gelating regime the solution (3.10) is uniformly valid for large
times. This is illustrated in figure 5, which shows forα = 0.9, β = 0.5 how the solution

Figure 5. Plot of log(cj t−ω/2) against logj at timest = 0.2–4, in steps of 0.2, forω = −0.5 and
α = 0.9,β = 0.5. Effects due to truncation are evident for largej at the later times, but elsewhere
convergence to (3.10) is exhibited.
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Figure 6. Plot of log(cj t−ω/2) against logj at timest = 0.2–4, in steps of 0.2, forω = −1.5 and
α = 0.3,β = 0.1, showing convergence to the inner (quasi-steady) solution.

converges for large time to a single curve, which on the log–log plot approaches a straight line
with gradient−2.4 for large enough cluster sizes. This is in close agreement with (3.11), since
−(α + β + 3)/2= −2.2.

Forω = −1, the expression (3.10) again describes the inner region, but because (3.6) is
replaced by ∫ ∞

0
xc(x, t)dx ∼ log t as t →∞ (3.14)

the outer similarity solution takes the form

c ∼ t− 2
1−(α+β) log−

1+α+β
1−(α+β) th(ζ ) ζ = x/t 1

1−(α+β) log
1

1−(α+β) t (3.15)

in place of (3.9).

3.3. The case−2< ω < −1

In this case there are three regions, inner, intermediate and outer. The leading-order inner
solution is of the quasi-steady form (3.1), this being illustrated numerically in figure 6. The
intermediate and outer solutions are given to leading order by similarity solutions of (3.10),
which we write in the form

intermediate c = t−ph(ζ ) ζ = x/tq with p − (α + β + 1)q = 1 (3.16)

outer c = t−mg(η) η = x/tn with m− (α + β + 1)n = 1. (3.17)

Since the inner solution is again of the quasi-steady form (3.10), matching requires, as before,
that p and q in (3.16) be given by (3.7). This is demonstrated in figure 7, where results
for ω = −1.5, α = 0.3 andβ = 0.1 are displayed as a plot of log(cj t−1.3/0.6) against
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Figure 7. Plot of log(cj tp) against log(j/tq ) with p = 13
6 andq = 5

6 showing convergence of
the intermediate solution at timest = 0.2–4, in steps of 0.2, forω = −1.5 andα = 0.3, β = 0.1.
Curves corresponding to later times are higher up and agree with the intermediate asymptotic result
over a greater horizontal interval.

log(j t−0.5/0.6), the curves at later times approaching a single curve for intermediate cluster
size.

The values ofm andn in (3.17) for the outer solution are determined by requiring from
(3.2) that ∫ ∞

0
xc(x, t)dx ∼ %0 − 1

ω + 1
tω+1
0 as t →∞ (3.18)

yielding (as in the constant mass case [5])

m = 2

1− (α + β)
n = 1

1− (α + β)
(3.19)

with ∫ ∞
0
ηg(η) dη = ρ0 − 1

ω + 1
tω+1
0 . (3.20)

We note thatn > q, as required, forω < −1,α + β < 1.
Figure 8 illustrates the outer asymptotic form

c(x, t) ∼ t− 2
1−(α+β) g(η) η = x/t 1

1−(α+β) as t →∞ η = O(1) (3.21)

the curves there becoming superimposed for large-time and large cluster size. Matching the
outer solution to the intermediate one gives

g(η) ∼ 2αβη−(α+β+1)

(1− (α + β))(α + β)B(1− α, 1− β) as η→ 0+

h(ζ ) ∼ 2αβζ−(α+β+1)

(1− (α + β))(α + β)B(1− α, 1− β) as ζ → +∞
(3.22)
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Figure 8. Plot of log(cj tm) against log(j/tn) with m = 10
6 andn = 5

3 showing the outer solution
at timest = 0.2–4, in steps of 0.2, forω = −1.5 andα = 0.3, β = 0.1. As time increases the
lowest portion of each curve moves to the left

the first of which follows from [5];h(ζ ) again satisfies (3.12) as the condition for matching
with the inner solution. The result (3.22) can be compared with the numerics in figure 8
where, for intermediatej , a straight line of gradient around−1.2 is approached, in reasonable
agreement with the value−(α + β + 1) = −1.4 predicted by asymptotics. Similarly, an
indication of the validity of (3.11) is provided by figure 6 where the gradient in the relevant
regime is approximately−1.4; the value given by the asymptotic result−(α + β + 3)/2 is
−1.7, so the agreement is fair, the numerical results seeming to consistently overestimate the
gradient somewhat.

In the gelating regimeα+β > 1, only the ‘inner’ region is present, numerical illustrations
being given in [4]. We note from (3.7) thatq → 0 asω→ −2, suggesting that the inner and
intermediate regions will merge; we shall now see that this is indeed the case. Similarly, as
ω→−1 we haven→ q and the intermediate and outer regions merge to give the two-region
structure discussed in section 3.2.

3.4. The caseω < −2

With ω < −2, the input of monomers at large times is so slow that the large-time asymptotic
structure of the solution is identical to that of the constant mass case studied earlier (see
section 3 of [5]). To summarize this, forj = O(1), there is an inner solution of the separable
form

cj (t) ∼ fj/t as t →∞. (3.23)

For gelating cases this solution is uniformly valid andfj ∼ Aj−(α+β+3)/2 as j → ∞ for
some constantA. In non-gelating cases the solution (3.23) is not uniformly valid and an
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Figure 9. Plot of log(tcj ) against logj showing the inner solution at timest = 0.2–4, in steps
of 0.2, forω = −2.5 andα = 0.3, β = 0.1. At smallj , the quantity log(tcj ) decreases with
increasing time.

outer solution which exhibits a more rapid decay at largej ≡ x is required (in particular,
to avoid divergences in the density). This outer solution satisfies the continuum limit (3.1)
of the coagulation equations, having the self-similar form (3.17), (3.19) and satisfying the
conservation of mass conditions (3.18), (3.20). Matching the inner (3.23) and outer (3.17)
solutions requires, in view of (3.22), that

fj ∼
2αβj−(α+β+1)

(1− (α + β))(α + β)B(1− α, 1− β) as j →∞. (3.24)

These results are illustrated in figures 9 and 10 forα = 0.3 andβ = 0.1. Figure 10

gives plots of log(cj t
2

1−(α+β) ) against log(j t−
1

1−(α+β) ), showing the concentrations with large
j approaching a single curve at large times. Figure 9 illustrates the inner solution (3.23),
approaching a straight line with gradient−1.2 for large enoughj , which may be compared
with the value of−1.4 predicted by (3.24). In both figures, effects due to the truncation of the
system are seen in the slight increase in concentrations at large cluster sizes.

For ω = −2, we conjecture that the asymptotic structure is as just described, but the
functionfj in (3.23) (which is independent ofω for ω < −2) differs because a full balance
occurs in (1.1), (1.2); the source term and the time derivatives are of the same order ast →∞
(namely O(t−2)) in the critical caseω = −2.

3.5. Complete gelation (α − β > 1)

Whenα andβ lie in the complete gelation regime, the infinite system (1.1), (1.2) has no
solution; however, for the truncated system (3.3) a solution does exist and can be readily
found numerically, providing insight into the non-existence of solutions to the infinite system.
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Figure 10. Plot of log(cj tm) against log(j/tn)withm = 10
3 andn = 5

3 showing the outer solution
(3.21) at timest = 0.2–4, in steps of 0.2, forω = −2.5 andα = 0.3,β = 0.1.

Figure 11 shows that even at small times, the majority of the system’s mass is in the largest
cluster size. Monomers rapidly coagulate to form dimers, leading to a preponderance of dimers
over monomers and a consequent domination of the system by clusters of even aggregation
number. The resulting oscillatory profile is evident in figure 11. The mass of the gel (which
we here define to beNcN ) and the total mass of the system are plotted in figure 12. The gel
rapidly takes up nearly the entire mass; this substantiates our assumption of complete gelation
in the infinite system, whereby all the mass is in the form of gel, withcj = 0 for finite j .

3.6. Summary

Forα > β > 0, the following regimes arise in the description of the large-time behaviour (we
shall not discuss the borderline cases here).

(i) Complete gelationα − β > 1. All the mass resides in the infinite gel particle.
(ii) Incomplete gelationα − β < 1, α + β > 1. Gelation occurs (either instantaneously

(α > 1) or after some finite time (α < 1)) but the mass is not all transferred into the gel
in finite time. We have

cj (t) ∼ t−1fj as t →∞ ω < −2 (3.25)

cj (t) ∼ tω/2gj as t →∞ ω > −2 (3.26)

for all j , with (3.25) satisfying the full system (1.1), (1.2), except that the source term is
negligible, and with (3.26) satisfying the quasi-steady version of (1.1), (1.2), in which the
left-hand sides are negligible. Thefj andgj are each independent ofω.

(iii) No gelationα + β < 1. The large-time forms (3.25), (3.26) remain valid forj = O(1),
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Figure 11. Plot of the numerical solution logcj against logj for ω = −1.8 andα = 2.5,β = 1.0,
at timest = 0.2–4 in steps of 0.2. The concentrations decrease with time for sufficiently small
logj but increase for large logj .

but different expressions hold for largej , specifically

cj (t) ∼ t−
2

1−(α+β) g(j/t
1

1−(α+β) ) as t →∞ with j = O(t
1

1−(α+β) ) ω < −2

(3.27)

cj (t) ∼
{
t−ph(j/tq) as t →∞ with j = O(tq)

t
− 2

1−(α+β) g(j/t
1

1−(α+β) ) as t →∞ with j = O(t
1

1−(α+β) )

−2< ω < −1 (3.28)

cj (t) ∼ t−ph(j/tq) as t →∞ with j = O(tq) − 1< ω (3.29)

wherep andq are given by (3.7) (implying 0< q < 1 for −2 < ω < −1). Matching
dictates that

h(ζ ) ∼ Aζ−(α+β+3)/2 as ζ → 0+ (3.30)

g(η) ∼ 2αβη−(α+β+1)

(1− (α + β))(α + β)B(1− α, 1− β) as η→ 0+ (3.31)

so the two similarity solutions can be characterized by the distinct power laws which
describe their local behaviour. For givenα andβ, the functiong(η) (which is independent
of ω) is the same in (3.28) as it is in (3.29), withg(η) decaying exponentially asη→∞;
the same functiong(η) also arises in the constant mass case (see [5]). However, in (3.28)
we have

h(ζ ) ∼ 2αβζ−(α+β+1)

(1− (α + β))(α + β)B(1− α, 1− β) as ζ → +∞ (3.32)

thereby matching with (3.31), whereash(ζ ) is exponentially decaying asζ → +∞ in
(3.29).
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Figure 12. Plot of the amount of mass in the total system and the amount of mass within the gel
for ω = −1.8 andα = 2.5,β = 1.0.

4. Discussion

In this paper we have used a combination of analytical, numerical and asymptotic methods
to investigate the coagulation equations with an input term which is dependent on time. Our
choice of injection rates includes (as the special caseω = 0) mass being introduced at a
constant rate. The ‘integrable’ systems, whereα andβ equal zero or one, do not appear to be
solvable completely by analytical means, but the zeroth, first and second moments have been
found exactly. Forα = β = 1 and−1< ω the calculation of the second moment enables, in
particular, the gelation time to be found.

For arbitrary positiveα andβ, the large-time asymptotics have been investigated. Such
large-time results are applicable to more general injection rates wherebyQ1(t) ∼ tω ast →∞
with Qj(t) decaying sufficiently rapidly forj > 2. A single regime is in force for all cluster
sizes in the post-gelation phase of the reaction, with a more complex asymptotic structure
present in systems which do not gelate. In the latter systems, there are three regions present
for −2 < ω < −1, two forω > −1 and two forω < −2. In this last case, mass is added
so slowly that for large time the system behaves identically to the constant mass case studied
earlier [5].

In systems which do not gelate, the large-time behaviour of the mass (M1(t)) is simply
the sum of the initial mass and the mass added, as given by (3.2). Mass is input in the form
of monomers, so it is interesting to note the behaviour of the monomer concentration; in cases
whereω > −2, this is governed for large time by an inner quasi-steady state solution in which
c1(t) ∼ tω/2g1, whereas in cases whereω < −2 the inner solution has the similarity form
cj (t) ∼ fj/t .

Also worthy of note is the behaviour of the number of clusters (M0(t)), the mass (M1(t))
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and the second moment of the cluster distribution function (M2(t)), for systems which do not
gelate. Forω > −1,

M0(t) ∼
∞∑
j=1

gj t
ω/2 M1(t) ∼ tω+1

ω + 1
M2(t) ∼

∫ ∞
0
ζ 2h(ζ ) dζ tω+1+ ω+2

1−(α+β)

as t →∞ (4.1)

the functionh(ζ ) being given by (3.9);M0 is dominated by the inner region andM1 andM2

by the outer. The polydispersity (M2M0/M
2
1) thus scales witht

(ω+2)(1+α+β)
2(1−(α+β)) in the large-time

limit. For −2 < ω < −1, the situation is a little more complicated since in the large-time
asymptotics there are three size scales of significance, with the inner region dominatingM0

and the outerM1 andM2, with

M0(t) ∼
∞∑
j=1

gj t
ω/2 M1(t) ∼ %0 − tω+1

0

ω + 1
M2(t) ∼

∫ ∞
0
η2g(η) dηt

1
1−(α+β)

as t →∞. (4.2)

In this case the polydispersity increases without bound, scaling witht
ω
2 + 1

1−(α+β) ast →∞. For
ω < −2, only the expression forM0 changes in (4.2), giving

M0(t) ∼
∞∑
j=1

fj t
−1 M1(t) ∼ %0 − tω+1

0

ω + 1
M2(t) ∼

∫ ∞
0
η2g(η) dηt

1
1−(α+β)

as t →∞. (4.3)

The polydispersity thus scales witht
α+β

1−(α+β) ast →∞. In these systems we have coagulation
and monomer addition occurring simultaneously, both causing the cluster distribution function
to change. In all cases the polydispersity increases without bound; it is natural to conjecture
that polydispersity is an increasing function of time in such systems. The results of section 2.1
are consistent with those just noted; the caseα = 1,β = 0 is non-generic (as noted in [5]), so
the results of section 2.2 are not embodied in (4.1)–(4.3), which requireα + β < 1.

For each regime the numerical results have been shown to substantiate the asymptotics.
If the parameters of the aggregation kernel allow gelation, then after gelation there is only one
asymptotic region present, whatever the value ofω. A numerical solution for the truncated
system in the complete gelation regime has been included; this shows that the gel (the largest
cluster) very rapidly absorbs the vast majority of the mass, corresponding to the infinite system
(1.1), (1.2) having no solution.
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